×
科学学研究

“科学学”视角下的科研工作者行为研究

1 引言

只有认识科学研究中的客观规律,了解科学工作者的行为特征,才能有效地评价科研成果、奖励科研发现、资助科研工作、培养科研人员[1-5]。现代科学已经毫无疑问地成长为一个复杂系统:涉及各个学科领域之间越来越强的交叉关联,新兴学科不断涌现,创新与渐进的知识不断积累,科学工作者在知识空间和物理空间的迁移以及他们在全球范围内的竞争和合作[6-9]。“科学可以被描述为一个增长并且演化的网络”[9],这个网络由学者与学者间的合作竞争关系、论文与论文间的引用关系、学者与不同研究主题间的参与关系、知识图谱中各个主题间的从属临近关系等多层异构网络构成,并随着相关主体的更新而演化。在过去的十几年间,科技论文、发明专利、项目申请书等与科研活动密切相关的资料呈现指数性的增长。这些资料以结构化、电子化的形式存储,提供了丰富的可供利用的“学术大数据”,为定量的、系统的、以科学系统为研究主体的研究工作开展提供了数据基础。“科学学(Science of Science)”这一传统问题[10]开始成为新兴的交叉研究热点。

利用大规模学术数据,结合信息科学领域的工具,是科学学研究中广泛采用的范式。区别于以往工作,当前的研究具有如下特点。

● 使用大规模高维度的数据,例如论文元数据(meta-data)往往包含数十万到上千万量级的论文数量,包含题目、摘要、作者、单位、相互引用情况等多维度结构信息。

● 具有交叉学科的鲜明特点,研究方法丰富多样,采用科学计量学中的指标衡量科研的绩效产出,利用信息科学领域的可视化、网络科学、机器学习、信息挖掘、多智能体建模等工具,借鉴社会科学中的理论。

● 不再拘泥于算法性能的提升或评价指标的提出,而是以科学系统为研究对象,探索其中的普适性规律和基础演化机制。

近几年来,在Nature、Science、Nature和Science的相关子刊、Proceedings of the National Academy of Sciences of the United States of America上发表的一系列高水平工作[3,11-16]充分展现了科学学研究的创新性和前沿性,也充分说明了当前的研究范式在探索复杂问题时的可行性。

相关研究在国内的开展具有更特殊的现实意义。中国的科学研究在过去的十多年间实现了飞速的发展[17]。中国每年有世界第二大的论文产出量和论文引用量,如图1(a)、图1(b)所示。然而体量的增长背后也隐藏着其他困境[18]。例如,中国科研论文在国际上仍然呈现“代表性不足”的特点,中国论文被国际同行引用的情况与论文的发表数量并不相称。通过分析Web of Science平台从1990年至2016年超过2000万篇论文及其超过1亿次的引用关系,笔者计算了一个国家的所有论文在某一年的总引用数量。笔者发现,在中国论文每年的总引用数量中,国际引用(非本国引用,按论文的第一单位划分)占比自2010年来逐年下降。而世界上其他科研大国,如美国、德国、英国、法国、日本、韩国等,国际引用占比却逐年增加,如图1(c)所示(为了更好地表现变化趋势,数值按照各国2010年的数值进行了归一化)。中国论文在2016年的所有引用中,仅有42%是来自国际的,在全球15个科研大国中排名最后,如图1(d)所示。这一现象说明了我国科研管理面临的新挑战:如何从量的增产转换为质的突破。通过对科学本体的研究,发现其中的客观规律,理解存在不足的原因,是应对这一挑战的前提条件和理论准备。

图1 全球SCI论文量较大的15个国家的论文产出和引用情况

综上所述,科学的复杂性、学术大数据带来的数据可用性、对科学研究中客观规律认知的现实需求,这3个要素共同推动“科学学”成为一个热点研究领域。科学研究的主导者是科研工作者,研究科学中的规律必然要先了解科研工作者的行为特征。基于人名消歧技术的进步,可以将科研工作者的研究成果进行较为精确的归集,从而以科研工作者个体和群体为研究对象,挖掘他们在科研过程中的行为规律。在后文中,笔者将梳理、介绍几个相互关联、递进的研究问题:通过对科研工作者“研究兴趣”的表征,研究他们在职业生涯中研究方向改变的规律;利用研究兴趣这一特征,研究“科研合作”的内在机制;不同的科研工作者通过合作形成“科研team”,而其中一部分长期稳定的合作关系形成了“科研团队”,通过相对合作强度从科研team中挖掘科研团队,从而识别二者在科研产出、影响力方面的不同;通过对科研团队的识别,归类论文引用来源,实现“研究成果多维量化”,同时帮助识别一些互引、自引、过度合作等可疑的“学术不端行为”。笔者从科学学的研究视角出发,聚焦于问题的提出与相应的科学发现。

上一篇:《科学与管理》杂志投稿须知
下一篇:没有了

Top